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Abstract 
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Spherical metasurfaces are particularly suited for the beam forming as 

they intrinsically cover the entire radiation space. We introduce here 

the possibility to realize multiple simultaneous and independent beam 

forming operations with a metasurface synthesized by Generalized 

Sheet Transition Conditions (GSTCs) combined with bianisotropic 

surface susceptibility tensors. Specifically, we demonstrate a spherical 

metasurface tilting upwards and downwards the radiation patterns of 

an electric dipole and a magnetic dipole, respectively. 
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Beam Forming with Planar Metasurfaces 
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Modulated Metasurface Antenna 

2015, G. Minatti et. al 

Planar Lens Antennas 

2015, A. Grbic et. al 

Coding 

metamaterials 

2014, T. J.Cui et. al 

Tunable Impedance Surface 

2003, G. Tangonan et. al 

Disadvantage: undesirable radiation in specific directions.  



Features of Spherical Metasurfaces 
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Advantages: Radiation pattern control over entire 𝟒𝝅 steradian solid angle  

(all 3D space) ! 

Features: 

 

 Closed structures (without diffraction at 

edges) 

 

 Decreasing size of particles from 

equator to poles 

 

 Possible multiple reflection events 

(porous spherical cavity) 

Ref: Raeker, Brian O., and Scott M. Rudolph. "Arbitrary Transformation of Radiation Patterns Using a Spherical Impedance Metasurface." IEEE Transactions on Antennas 

and Propagation 64.12 (2016): 5243-5250. 

Assumptions: a) Interior excitation, b) zero reflection (matched) 



Synthesis Problem of Spherical Metasurface 
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Synthesis problem: 

 Determine susceptibility tensors: 

      𝐸 𝜃, 𝜑 , H 𝜃, 𝜑 → 𝜒 (𝜃, 𝜑) 

     

𝝌𝒆𝒆
𝜽𝜽 = 𝝌𝒆𝒆

𝝋𝝋
→ 

𝝌𝒆𝒎
𝜽𝒓 = 𝝌𝒆𝒎

𝝋𝒓
→ 

Ref: Jia, Xiao, et al. "A general synthesis method of spherical metasurfaces based on susceptibility tensors." IEEE Transactions on Antennas and 

Propagation. (under review) 

 Determine scattering particles: 
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Maxwell Equations in Terms of Volume & Surface Polarizations 
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Maxwell Equations: 

The Constitutive Relations: 

Medium information in polarizibilities: 

Polarizations decomposition 



Maxwell Equations in Terms of Volume & Surface Polarizations 
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Applying Stokes Theorem 

with 

yields 



Generalized Sheet Transition Conditions (GSTCs) 
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GSTCs: 

Ref 1: Idemen, M. Mithat. Discontinuities in the electromagnetic field. Vol. 40. John Wiley & Sons, 2011. 

Ref 2: Achouri, Karim, Mohamed A. Salem, and Christophe Caloz. "General metasurface synthesis based on susceptibility tensors." IEEE Transactions on Antennas and 

Propagation 63.7 (2015): 2977-2991. 

Ref 3: Kuester, Edward F., et al. "Averaged transition conditions for electromagnetic fields at a metafilm." IEEE Transactions on Antennas and Propagation 51.10 (2003): 2641-

2651. 
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Synthesis Equations 
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GSTCs: 

Assuming normal components are zero: 



Susceptibility Determination (Simplest Case) 
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Non-gyrotropic monoanisotropy (and therefore also reciprocity) 

Solution: 

Reciprocity(possibly with loss and gain): 

Loss/gain-less reciprocity: 

Non-gyrotropy: 



Scattering Parameter Mapping from Susceptibilities 
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Adjust the geometry 

Combine the so designed unit cells 

𝝌  

𝝋 

Discretize the susceptibilities 

Select a scattering particle 

Compute the scattering parameters 

Extract the susceptibilities 

compare 

No 

Yes 

output 
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Illusion Transformation 
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Ring Focusing 
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Birefringence (double transformation) 
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Multiple Beam Forming 
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Conclusion 
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 Extension of susceptibility-GSTC synthesis to spherical metasurfaces 

 

 Future works: 

 Porous cavity (multiple internal scattering) problem 

 Scattering particle design (size reduction from equator to poles) 

 Fabrication & testing 

 Application to beam forming 
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